Showing posts with label AESA. Show all posts
Showing posts with label AESA. Show all posts

Friday, 17 January 2020

Gimme STOVL : Singapore Decides On The F-35B






F-35B of the Marine Fighter Attack Training Squadron 501
Photo : Lockheed Martin





On 9th Jan 2020, the Defense Security Cooperation Agency ( DSCA ) announced that the US Department of State had just approved a potential Foreign Military Sale ( FMS ) to Singapore of up to 12 F-35B Short Take-Off And Vertical Landing ( STOVL ) aircraft and related equipment for an estimated cost of USD 2.75 billion.

Singapore's interest in the F-35 Joint Strike Fighter ( JSF ) program had began in Mar 2004 when it became a security cooperative participant. For a very long time the Singapore government seemed contented to just monitor the progress of the JSF program as it matured. There were numerous instances when defense analysts and news agencies had indicated that Singapore might be ready to acquire the F-35 but the JSF deal had remained elusive. It even failed to materialize during Prime Minister Lee Hsien Loong's visit to the White House in 2016, at the invitation of President Obama.

All that changed in Jan 2019 when Minister for Defense Ng Eng Hen announced that Singapore had identified the F-35 as a suitable candidate to replace its ageing F-16 fighters and would be acquiring a small number of the stealthy 5th generation fighter for a full evaluation of its capabilities and suitability before deciding on a full fleet.

By Mar 2019 it was revealed that Singapore would be requesting for an initial four F-35 JSF with an option for eight more, variant unspecified. Months of media speculation followed, but we now know that Singapore has selected the F-35B, the STOVL version which is the most expensive among the three F-35 variants.


The F-35 In A Nutshell


At a cost of more than USD 400 billion, the F-35 Joint Strike Fighter program is the most expensive weapons program the world has seen. Its aim is to produce an affordable fifth generation multi-role stealth fighter to replace various legacy fighters of the US and its closest allies. The F-35 comes in three variants, all having similar performance characteristics and share commonality in parts and processes in order to capitalize on the economies of scale to reduce procurement and sustainment costs. The variants cater to the differing service-specific requirements by the Air Force, Navy and Marines. To put it simply, the F-35A is the conventional take-off and landing ( CTOL ) version for the Air Force, the F-35B is the STOVL version for the Marines while the F-35C is the carrier variant ( CV ) for the Navy.

The JSF program is plagued with multiple issues from technical deficiencies, delays to cost overruns and the root of its many problems can be traced to its developmental concept of " concurrency ". The idea that in an era where new technology is emerging at an unprecedented rate, an aircraft design will be obsolete the moment its development has concluded. In order to field aircrafts with the latest technologies earlier, they will be produced before tests and trials are completed and eventually upgraded along the way to the latest standards.

Despite its troubled past, the JSF program has matured over the years and has seemed to turn around to deliver what was originally promised - affordable stealth. Unit prices have continuously fallen in the past several years due in part to an increase in production efficiency and to the economy of scale from an increase in aircraft orders.



New Capabilities for the RSAF



Acquiring the F-35B will bring two completely new capabilities to the Republic of Singapore Air Force ( RSAF ) - STOVL and Stealth. Between the two, I would believe STOVL is the most unique since there is not another country in the Asia Pacific region save Japan that has confirmed plans for such a capability.

Stealth technology can become an increasing crucial capability to have as Singapore's regional near-peer rivals begin to acquire sophisticated aircrafts like the Su-30 and Su-35 which can out-class even the RSAF's most advance fighter like the F-15SG. It can ensure higher survivability of the aircraft and pilot in an extremely hostile threat environment.

STOVL is equally important to ensure sustained generation of air operations in the event of disruptive attacks to Singapore's airbases. Aircrafts with short field capabilities can be dispersed and hidden more effectively on the ground and can have alternative means of take-off and landing even when the conventional runway is made unavailable by a pre-emptive strike.

In addition, having STOVL capable jets means that should the Singapore Navy decide to replace its Endurance-class landing ship tank with something bigger like the Endurance-160 Joint Multi-Mission Ship, these helicopter assault ships can be potentially modified for F-35B operations as well, converting them into light aircraft carriers. The JMMS then becomes mobile airfields at sea, projecting airpower and will be an added insurance against complete annihilation through a coordinated attack on Singapore's land based runway infrastructure.




F-35B of the Patuxent River Integrated Test Force
attempts vertical landing on the Queen Elizabeth II
3rd Nov 2018. Photo : USN 



STOVL : Unique Capability At A Price



The F-35B is not just the only modern STOVL jet fighter that is currently in production, it is also capable of supersonic flight. Its predecessor the AV-8B Harrier II which is also STOVL capable is at best only sub-sonic. This short field and austere field capability is the unique selling point of the F-35B but it comes at a price.

The requirement for STOVL capability in the F-35B meant that its design is the most complex among the three F-35 variants. It needed a proprietary shaft driven LiftFan propulsion system and an engine nozzle that can swivel 90 degrees when in STOVL mode. This in turns imposes limits on the size of the internal weapon bay and the internal fuel capacity which translates to a reduction in the weapons payload and combat radius. It even imposes structural limits and the F-35B has the lowest maximum g-rating among all the variants. Understandably the unit cost of the F-35B is also consistently the highest compared to the other variants.

So in view of the various technical setbacks peculiar to the F-35B, is the STOVL a capability worth having? The answer has to be an absolute yes if you intend to have fixed-wing flight operations on non-catapult equipped aircraft carriers like the navies of the United kingdom, Italy and Japan. It will also be a resounding yes for a small nation like Singapore which lacks strategic depth and has air bases that can be vulnerable to a determined attack by rocket, artillery and mortar fire from across its boarders.

Looking at the broader picture, the non-STOVL variants, the F-35A and the F-35C, also suffered similar functional and structural setbacks albeit to a lesser degree simply because of the requirement that all three variants had to have shared design and components with various degrees of commonality. In other words, the Marine Corps' insistent that STOVL capability must be included in their variant essentially resulted in the Air Force and the Navy having to accept compromises on their variants too. Compared with its 4th generation peers that it is meant to replace, the F-35 is frequently found to be a little lacking in maximum speed, agility, range and payload. The saving grace is that the F-35 more than makes up for all these shortfalls through its superior suite of sensors, avionics, sensor fusion and low observable technology, all of which shall be briefly reviewed below.



F-35 specifications. Source : LMC


Very Low Observable



The F-35 is a fifth generation fighter which, according to its main contractor Lockheed Martin, is defined by the combination of Very Low Observable ( VLO ) stealth, advanced sensors, information fusion and network connectivity within a supersonic, long range and highly maneuverable aircraft.

VLO stealth technology is an integral part of the F-35's design. The clever use of shapes to deflect radar waves, the careful selection of materials that can dissipate radar energy and the internal carriage of weapons, fuel and embedded sensors means that it is much harder for the enemy to detect the F-35. The radar cross section ( RCS ) of the F-35 is the smallest when it is viewed head-on but less so when viewed from the side and even worse when viewed from the rear so it is hardly all-aspect stealth. It is also mainly stealthy in the X-Band, the most common frequency used by fire control radars and less so in other lower frequencies.

As much as it is hyped, stealth is not equivalent to invisibility to radar but rather a significant reduction in the detectability. Any advantage a stealth aircraft has can be undermined by several means including the use of infra-red search and tract technology to detect the heat signature of a stealthy aircraft and through the use of radar operating in frequencies other than the X Band, like L-Band or VHF.

While the level of stealth afforded by the F-35 is not at the same level as that of the F-22 Raptor, it is less costly to maintain as there is less dependency on expensive radar absorbing coating and that is definitely a good thing.


Distributed Aperture System



The electro-optical Distributed Aperture System ( DAS ) is a new generation of sensor system currently only found on the F-35 consisting of six identical high resolution mid-wave infrared ( MWIR ) sensors mounted all around the airframe in such a way as to provide an unobstructed 360 degree coverage for enhanced situational awareness. The DAS sends high resolution augmented reality imagery in real time to the pilot's helmet mounted display allowing them to see their surrounding environment with clarity day or night. It can provide functions including missile detection and tracking, launch point detection and countermeasures cueing, aircraft detection and tracking ( situation awareness IRST and air-to-air weapons cueing ), day and night navigation, and precision tracking of friendly aircraft for tactical maneuvering. Designated the AN/AAQ-37, the DAS is developed by Northrop Grumman Electronic Systems and has its fair share of teething problems though they have largely been resolved by now. More than a thousand DAS units have been delivered by Northrop Grumman so far, for installation on aircrafts up to and including LRIP Lot 14.

In 2018, Lockheed Martin announced that Raytheon has been selected to develop the next generation DAS which will be expected to have better performance, higher reliability and lower sustainment costs. They will be installed on all Low Rate Initial Production ( LRIP ) Lot 15 aircrafts for delivery in 2023.



Raytheon's next generation DAS. Source : LMC

 
 

Electro-Optical Targeting System

 
 
The AN/AAQ-40 Electro-Optical Targeting System ( EOTS ) is an internally mounted advance MWIR targeting sensor developed by Lockheed Martin Missiles and Fire Control Sensors. The EOTS integrates targeting forward looking infrared ( TFLIR ), infrared search and track ( IRST ), laser range finder / designator and laser spot tracker functionalities to provide the F-35 with precision air-to-air and air-to ground targeting capability. The low drag, stealthy EOTS is integrated into the F-35's fuselage ventrally just behind the nose cone with a faceted sapphire window and is linked to the aircraft's central processor by a high-speed fiber-optic interface. Utilizing the mid-wave portion of the IR spectrum provides a sharper image and is less susceptible to target obstruction by smoke or haze.
 
Lockheed Martin has already developed the next generation Advanced EOTS which will provide a range of multi-spectral sensing options including high-resolution mid-wave infrared, short-wave infrared and near infrared. It will have enhanced image detector resolution, high-definition TV and IR marker. The advanced EOTS will  be available for integration on the F-35's Block 4 development and will sharpen the F-35's close air support capabilities.
 
 
 
Source ; F-35 Joint Program Office


The EOTS on a F-35A. Source : LMC

 
EOTS functionalities. Source  LMC


Multi-Mission Active Electronically Scanned Array Radar



The AN/APG-81 active electronically scanned array ( AESA ) radar installed on the F-35 is developed by Northrop Grumman Electronic Systems. It is the next generation version of the AN/APG-77 AESA radar that was first fielded on the F-22A Raptor. It allows the F-35 to engage air and ground targets at long range and also has significant electronic warfare and intelligence, surveillance and reconnaissance functions. Its solid state technology and elimination of moving parts ensure better reliability compared with mechanically scanned antenna radars. The AN/APG-81 also has inherent low probability of intercept ( LPI ) features to minimize the likelihood of its emissions being usefully detected by enemy airborne or ground based receivers.

The AN/APG-81 is designed to operate as a radar, an electronic support measures ( ESM ) receiver, and a jammer. It has passive and active air-to-air and air-to-surface target detection, track and identification capabilities. It also enables synthetic aperture radar mapping, ground and sea moving target detection and track and air-to-surface ranging. As good as it is, the AN/APG-81 is still lacking a wide field capability in its sea search mode, being able only to seek out a narrow zone in front of it. This deficiency will be rectified in the F-35 Block 4 upgrade being carried out from 2019 to 2024. Together with the integration of partner nation ordnance like Norway's Joint Strike Missile which will also happen during Block 4 upgrades, the maritime strike capabilities of the F-35 will be greatly enhanced.


AN/APG-81 AESA radar. Source : Northrop Grumman



Integrated Communications, Navigation and Identification Avionics



The AN/ASQ-242 integrated communications, navigation and identification ( CNI ) avionics suite developed by Northrop Grumman is designed to provide the F-35 with secure, electronic countermeasures resistant voice and data communications; precise radio-navigation and landing capabilities; self-identification and BVR target identification; and network connectivity with off-board sources of information. All these at a reduction in size, weight and power requirements compared with legacy systems.

The CNI sub-systems includes the Multifunction Advanced Data Link (MADL), Link 16 data link, single-channel ground and airborne radio system (SINCGARS), IFF interrogator and transponder, HAVE QUICK radio, AM, VHF, UHF AM, and UHF FM radio systems, GUARD survival radio, radar altimeter; tactical air navigation (TACAN), inertial navigation system ( INS ), anti-jam GPS, instrument landing system ( ILS ) for conventional runways and aircraft carriers, the Joint Precision Approach and Landing System (JPALS), and the TADIL-J tactical digital information link with Joint-Variable-Message-Format (JVMF) communications.

The CNI system provides inter-operability with existing legacy military and civilian communications, radio-frequency navigation, and identify friend or foe ( IFF ) / surveillance systems. It is also interoperable with the appropriate civilian systems for US and European airspace operations.


Electronic Warfare / Countermeasures System



The AN/ASQ-239 electronic warfare / countermeasures ( EW/CM ) system developed by BAE is designed to provide the F-35 with a high degree of air-to-air and surface-to-air threat detection and self protection. It can search, detect, identify, locate and counter radio-frequency and infrared threats.

Its advance avionics and sensors enables real time, all aspect, broad-band coverage of the battlefield, maximizing detection ranges and giving the F-35 pilots evasion, engagement, countermeasure or jamming options. In other words it allows the F-35 to dominate the electromagnetic spectrum.

The EW subsystem serves as a signals collector which provides radar warning, identifies the geolocation of electronic emitters, tracks multiple aircrafts simultaneously, provides high gain electronic support measures ( ESM ), high gain electronic countermeasures ( ECM ) and high gain electronic attack via the AN/APG-81 radar's multifunction array.

The countermeasures subsystem provides multiple self-defense responses, including pre-emptive and reactive techniques, based on available expendable payload ( MJU-61/64/68/69 IRCM flares and ALE-70 RFCM fiber-optic towed decoys ) and threat-specific self-protection plans.

Lockheed Martin claims that due to the inherent, built-in electronic warfare capabilities the F-35 does not require a dedicated electronic attack aircraft to support it. That could potentially free up other aircraft to perform electronic attack missions to protect less stealthy aircraft. This organic jamming capability of the F-35 through its AESA radar, teamed with advanced jamming algorithm packages, can potentially provide 10 times the jamming power of legacy aircraft.



Various elements of the AN/ASQ-239
Source : LMC



The F-35's T-1687/ALE-70(V) fiber-optic towed decoy
works similarly to the F/A-18's AN/ALE-55 shown above.
Source : BAE Systems


Sensor Fusion



The F-35's advanced sensor fusion allow pilots to harness information received from all their onboard sensors to create a single integrated picture of the battlefield. Such information is then automatically shared with other pilots and command and control operating centers on their network via a secure datalink such as the Multifunction Advanced Data Link ( MADL ).


Helmet Mounted Display System



The F-35's Gen III Helmet Mounted Display System ( HMDS ) is an interface that provides pilots with intuitive access to vast quantities of flight, tactical and sensor information for advanced situational awareness, safety and precision. All the information that the pilots need to complete their mission is projected onto the helmet visor rather than on a traditional Heads-up Display. It reduces the pilot's workload and increases responsiveness. In addition, real-time imagery from the DAS's six IR cameras streamed to the helmet allows the pilot to virtually look through the airframe providing the equivalent of x-ray vision. The HMDS enables pilots to target weapons by looking at and designating targets. It does so by tracking the position of the helmet to determine the gaze of the pilot and supplies information such as target identity and distance. This off-boresight targeting capability is especially useful when used in combination with modern all-aspect air-to-air missiles like the AIM-9X. The helmet also offers visor-projected night vision and eliminates the separate use of night vision goggles.

All these functionality comes at a price though. The F-35's super helmet costs a whopping $400000 and has to be custom made for each aviator to ensure a precise fit for the tracking system to work accurately. Rockwell Collins, the maker of the helmet, estimated that every F-35 on order will need 2.5 to 3 helmets over their service life due to wear and tear, damage and pilot attrition and replacement.


F-35 Helmet. Source : USAF


Auto Ground Collision Avoidance System



Work done on the F-16's auto ground collision avoidance system ( AGCAS ) has enabled fielding of this revolutionary flight safety system on the F-35 seven years earlier than originally scheduled. The AGCAS integration could have began as early as 2019 and has been estimated to prevent more than 26 ground collisions over the service life of the F-35.



Autonomic Logistic Information System


The Autonomic Logistic Information System ( ALIS ) of the F-35's fleet managing system is the web enabled IT infrastructure that was meant to support cost effective sustainment throughout the life time of the aircraft. It however did not live up to expectations and has been blamed for, among other things, the F-35's poor mission capability rates in the past. It will be replaced by a new system known as Operational Data Integrated Network ( ODIN ) starting from late 2020 which it is hoped will be more user-friendly, secure and less prone to error. Full implementation will be expected by 2022.

 


Core Missions



Armed with such a dazzling array of advanced sensors and capabilities, the multi-role F-35 can be tasked to perform the following missions :

Air superiority - offensive and defensive counterair
Strategic attack / Air Interdiction against high value strategic and mobile targets
Close air support
Suppression / destruction of enemy air defense
Electronic Warfare
Intelligence, surveillance and reconnaissance
Extended surface warfare - maritime strike  ( with future F-35 Block 4 upgrades )

 
 
F-35 releasing JSM from its internal weapon bay
during maritime interdiction. Illustration : Kongsberg



Singapore's Cautious Buy



The F-35 has come a long way since the commencement of the JSF program in 2001. All three variants have achieved initial operational capability ( IOC ), with the F-35B of the Marine Corps first to do so in 2015 with Block 2B software which allows for initial warfighting capability. It was followed by the USAF's declaration of IOC for the F-35A in 2016 with the Block 3i software and lastly the USN for the F-35C with the Block 3F full warfighting capability software by Feb 2019. The long drawn system development and demonstration ( SDD ) phase has concluded in April 2018 and a new phase known as Initial Operational Test And Evaluation ( IOT&E ) has began. The successful conclusion of the IOT&E, initially due in Jul 2019 but currently delayed by problems relating to the Joint Simulation Environment facility, will pave the way for the commencement of full rate production ( FRP ).

Production numbers are peaking with a record number of 134 F-35s delivered in 2019 and that figure is expected to be surpassed in 2020. The combined all variants production numbers have reach 491 aircrafts by December 2019. The unit cost of all variants have continued to fall for the past few years and the latest LRIP Lot 14 F-35B for delivery in 2022 has a unit cost of S101.3 million, significantly lower than the LRIP Lot 11's $115.5 million or the LRIP Lot 10's $122.4 million. With the latest LRIP Lot 12 to Lot 14 F-35A CTOL variant Lockheed Martin even managed to lower the unit cost to their promised less than $80 million target, a year ahead of schedule.




Yet the F-35 has still not ironed out all its teething problems, though it probably will in time to come. Also, although unit prices have steadily fallen, operating costs have not. At between $34000 to $36000 per hour, the F-35 cost significantly more to operate compared with the legacy aircrafts it was meant to replace, like the F-16 ( $24000 per hour ) or F/A-18 ( $24400 per hour ). The fatal crash of a F-35A of the Japan Air Self Defense Force in April 2019 would have added uncertainties to its air worthiness and safety record but it was eventually attributed to spatial disorientation of the pilot. The event nonetheless delayed Singapore's decision making process to buy the F-35. It is therefore not surprising that the Singapore government only committed itself to an initial four aircraft purchase, with an option for eight more. It is not even enough to form half a squadron, and as declared the initial four aircrafts will be used for tests and evaluation. It will be crucial to find out, among other things, if the Pratt & Whitney F135 engine can actually produce enough vertical thrust in the typically hot and humid environment of Singapore to allow for hovering and vertical landing of a laden F-35B.


 

STOVL Above Stealth



Singapore's selection of the F-35B demonstrates that above all, it values the STOVL capability and the basing flexibility and operational flexibility it brings. If stealth and sensor fusion were its main focus, it would have chosen the F-35A CTOL variant like most other non-US operators of the F-35. It is even willing to trade physical attributes like range, payload and agility for the inclusion of STOVL, which in retrospect makes a lot of sense. The greatest strength of the F-35 is not about its absolute speed, rate of climb, range on internal fuel, sustained turn rate, maximum payload or maximum g-rating. Many legacy 4th generation fighters do better on those parameters. The real value of the F-35 is its survivability in an access denied high threat environment and its superior networking capability thanks to its VLO technology, all-encompassing sensors, organic self-protection mechanisms and connectivity. The planned closure of the Paya Lebar Air Base after 2030 will have the Republic of Singapore Air Force operating out of its three other remaining air bases, Sembawang, Tengah and Changi. That makes the adoption of STOVL capabilities very sensible as it can mitigate some of the risks of air operations disruption from airfield denial attacks.

In the United States, the F-35B has not only changed the way which the Marine Corps' Amphibious Ready Groups conduct their missions, it has given them new blue-water capabilities in the absence of a carrier nearby. The LHAs and LHDs have suddenly turned into mini-carriers in their own right and find themselves taking on missions normally assigned to carrier strike groups. These are mind boggling stuff that was just impossible a few years ago.




Mini carrier : USS America ( LHA-6 ) staged with 13 F-35B
of the VMFA-122 in the eastern Pacific 8th Oct 2019.
Photo : USN




What Happens Next



The Department of State has in principle given the green light for Singapore to acquire up to 12 F-35B fighters but Congress must still approve the deal. Congress was formally notified of the proposed sale on 9th Jan 2020 and has 30 days to review it before it is approved. Given the good bilateral relations between Singapore and the US and the fact that Singapore is a strategic friend and a major security cooperation partner of the US in the Asia Pacific region, the Congressional Note, a necessary FMS formality, will likely be approved without issues. With Congressional approval, final terms will be negotiated for the Letter of Offer and Acceptance.

Singapore may have deliberately timed its F-35 purchase to coincide with the end of LRIP and the beginning of full-rate production. Since current LRIP Lot 12 to Lot 14 for delivery between 2020 and 2022 are likely to have been fully allocated, the assembly of Singapore's initial four F-35B could be assigned to later production lots like LRIP Lot 15 / FRP. Whichever production lot they come from, Singapore is likely to receive the F-35B Block 4 with the latest software upgrades and enhanced warfighting capaibities.

All four initial F-35B are likely to end up at Marine Corps Air Station Beaufort in South Carolina where all international F-35B pilots and maintainers are trained. They will form a training detachment where the first batches of RSAF pilots and ground personnel will undergo training with their USMC counterparts from the Marine Fighter Attack Training Squadron 501 ( VMFAT-501 )  and other foreign entities from the UK, Italy and Japan.

Only when sufficient numbers of F-35Bs have been procured, such as when the addition option of eight F-35B have been exercised and sufficient pilots and maintainers trained will some of these new generation fighters be brought back to Singapore for integration with the rest of the Air Force. What follows will be the achievement of IOC and FOC.

The RSAF already has some of the assets and capabilities that will be essential for supporting 5th generation fighter operations, such as the Leonardo M-346 lead-in fighter trainer for pilot training prior to F-35 operational conversion and the Airbus A-330 Multi-Role Tanker Transport ( MRTT ) for aerial refueling during deployments. It is worthwhile to note that the F-35B ultilises the probe-and-drogue method for aerial refueling similar to all other USN and USMC fixed wing aircrafts, instead of the flying boom method common to USAF tactical fighters, including the F-35A. So apart from the MRTT, perhaps the refueling capabilities of the RSAF's ageing KC-130B and KC-130H might again be put to good use, provided they are still in service in the 2030s!




F-35B of VMFA-121 refuels from a KC-130J
over the East China Sea Oct 2018. Photo : USN
 
 
F-35B refueling from KC-130J near MCAS Beaufort
18th Mar 2015. Photo LMC


Sending A Message To China?



Hardly. The news media had it all wrong. While nobody apart from totalitarian and despotic regimes loves China, it does not mean that Singapore's F-35 buy is directed at China, or any other country for that matter, as the Ministry of Defence has claimed. This is especially true as Singapore does not have any territorial disputes with China and China is also one of Singapore's largest trading partners. But it does have a vested interest in ensuring its sea lines of communication remains secure and open so that trade flows are not disrupted.

The notion that Singapore can work together with the other F-35 operating countries in the Asia Pacific, namely Australia, Japan and South Korea, to contain China is also without merit. Why would Singapore want to get involved with the squabbles between China and each of these countries? Has it not had enough of its own problems?

Therefore this F-35 acquisition is just another routine force renewal exercise aimed at replacing the ageing F-16 fighters which have been in service with the RSAF since 1998. Nobody should really read too much into it or worry about it .... at least until the Joint Multi-Mission Ship is constructed.




F-35B performs ramp-assisted take-off onboard
HMS QEII in Nov 2018. Photo : USN





















Friday, 22 January 2016

Kawasaki P-1 Maritime Patrol Aircraft : Japan's Brand New Submarine Hunter

 
 

The Kawasaki P-1 maritime patrol aircraft of the Japan Maritime Self Defense Force.
 JMSDF Photo.


Introduction


From the same folks who brought you the legendary Kawasaki Z-1 in 1972 that revolutionalised the motorcycle industry comes a spanking new submarine hunter? It's not surprising since Japan's Kawasaki Heavy Industries ( KHI ) is a huge industrial conglomerate made up of multiple divisions and disciplines. KHI's product portfolio includes anything from the Soryu class Submarine, bulk carriers, LNG carriers, the T-4 Advanced Jet Trainer, Boeing 787 ( Joint Production ), helicopters, space rockets and space station components, motorcycles and ATV, jet skis, high speed rail, industrial robots .... the list goes on and on. KHI is known as 川崎重工業 or Kawasaki Jukogyo in Japanese.



A legend was born : The 1972 Kawasaki Z-1, air-cooled,
4 stroke, 4 cylinders, 903cc DOHC super bike.
This was what catapulted Kawasaki into the global lime light. Photo : KHI



Maritime Patrol Aircraft : A Brief History



A maritime patrol aircraft ( MPA ) is a fixed-wing surveillance aircraft that is designed to operate over open water for extended duration in sea patrol duties, in particular anti-submarine, anti-ship and search and rescue roles. Its history can be traced as far back as World War I, when bombers and floatplanes were converted into patrol aircrafts to counter the German U-boat menace. These early generation MPAs were frequently armed with machine guns, bombs and depth charges.

The requirement for high endurance aircrafts to patrol vast expanses of oceans meant that by WWII, many MPAs were converted from long range bombers ( Consolidated B-24 Liberator ) or airliners ( Focke-Wulf Fw-200 Condor ). Some like the Consolidated PBY Catalina amphibious plane were purpose-built. The emergence of air to surface vessel radars during that era was one of the most significant technological advancement that would change the nature of naval warfare. MPAs armed with high resolution centimetric radars like the ASV III can easily detect small objects like the periscope or snorkel of a submerged submarine making them highly effective in anti-submarine warfare ( ASW ).

The immediate post-WWII period ushered in the jet era, and MPAs continued to evolve in operational capabilities with new technologies like sonobuoys and the magnetic anomaly detector ( MAD ), though due to their unique operational requirement of high loiter time at low speed and low altitude, they remained largely piston engine or turboprop driven. The Lockheed P-2V Neptune from which the Japanese variant the P-2J was based on was a typical example from that time. And yes, the P-2J was license-produced by Kawasaki.

During the Cold War, the emerging threat of ballistic missile carrying submarines raining death and destruction onto large population centres with their multiple nuclear warheads from thousands of miles away meant that MPAs continue to be relevant and in demand. Many of the MPAs currently in service throughout the world like the Lockheed P-3C Orion, the Tupolev Tu-142 Bear and the Ilyushin Il-38 May are products of that era. It was also during that time jet-powered MPAs began to appear, the first to enter service being the Hawker Siddeley Nimrod MR1.

Today, most MPAs continue the tradition of having airframes derived from proven civilian platforms, especially jetliners. The Boeing P-8A Poseidon based on the venerable 737-800 is a typical example. In the future we would undoubtedly have MPAs in the form of unmanned aerial vehicles like the soon to be operational Northrop Grumman MQ-4C Triton developed under the Broad Area Maritime Surveillance programme.


Japan's MPA Fleet


When Japan's Maritime Self-Defense Force ( JMSDF ) was formed in 1954, it operated obsolete WWII aircraft donated by the United States which included 17 Lockheed PV-2 Harpoon patrol bombers and 20 Grumman TBF Avenger torpedo bombers.

From 1956, 60 Lockheed P-2V7 Neptune MPA were added to the fleet, and starting from 1957, 60 Grumman S-2F Tracker ASW aircraft. The Japanese loved the P-2V7 so much that when the time came to have them replaced by the more advanced but expensive Lockheed P-3A Orion, they opted instead to develop an improved version, the P-2V7 Kai ( 改 - kai in Japanese means upgrade or to improve ), later licence produced and designated P-2J. A total of 83 P-2J were produced and they were operational between 1971 to 1994.

The P-2J was eventually replaced by the P-3C, 98 of which was licence produced between 1978 and 1997. Five P-3C had been converted to the OP-3C reconnaissance version and the remaining 93 P-3C are currently the backbone of the JMSDF MPA fleet. Add to that number another 5 EP-3, 1 UP-3C and 3 UP-3D, the grand total is 107 making Japan the largest P-3 operator after the United States.  They will ultimately be replaced by the P-1 of which 70 aircrafts have been planned. The JMSDF classifies the P-3C and the P-1 as Fixed Wing Patrol Aircraft (  固定翼哨戒機 Koteiyoku Shokaiki )




A Kawasaki P-3C Orion based at Atsugi Air Base, Kanagawa Prefecture
flies overland with Mount Fuji in the background.
The JMSDF currently has 93 P-3C in its inventory. Photo : JMSDF 



The UP-3D of the 91st Fleet Air Sqn is an ESM-trainer aircraft
 for the ships of the JMSDF. Its mission is similar to the EP-3J of the USN.
 This particular aircraft with serial number 9163 is the last P-3 ever produced.
Notice the lack of a MAD boom. Photo JMSDF 



The Future MPA P-X Programme


Shortly after the last P-3C ( actually a UP-3D variant, see photo above ) was delivered to the JMSDF by KHI on 1st Feb 2000, marking the end of a production run that lasted for 38 years, the Japanese were already planning for its successor. The Cold War had ended and in the United States, Lockheed's next generation MPA programme, the P-7 Long Range Air ASW Capable Aircraft ( LRAACA ), failed to materialise due to budgetary problems and after incurring huge cost overruns. Existing European alternatives like the United Kingdom's Nimrod MR2 did not meet Japanese requirements. Eventually the Japanese decided that they would have to develop their own MPA.

The P-X future MPA programme was thus initiated in 2001 by the Japanese Ministry of Defence concurrently with the next generation transport aircraft C-X programme to replace the C-130 Hercules and the C-1. These two developments were to be managed as a single project and Kawasaki was appointed the main contractor. The P-X and C-X shared structural components and sub-systems and utilized commercial off the shelf products to save on development and production costs.

First flight for the P-X prototype, by then re-designated the XP-1, took place on 28th Sep 2007. By March 2010 four XP-1 had been delivered to the MOD for testing and trials. They were introduced into service in 2013 as the Kawasaki P-1 to gradually replace JMSDF's ageing P-3C Orion. They were supposed to have attained full operational capability by Sep 2015.



The XP-1 Prototype in Technical Research and Development Institute (TRDI)
 colours at Atsugi Air Base, April 2011. Photo : Wikipaedia



The Kawasaki P1



The Kawasaki P-1 at RIAT 2015, RAF Fairford. Photo : Wikipaedia



The P-1 is unique among all the various modern maritime patrol aircraft as it one of a few that is completely designed from the ground up and not adapted from some bomber or commercial airliner. That means every single part is purpose designed and purpose built. Also, it was originally created for just one customer, the JMSDF, since the post-war Constitution of Japan forbade the export of weapons and weapon systems until very recently. As such, throughout its development and even as it is being deployed in active service, very few outside the defense circles have heard about this mysterious Japanese multi-mission maritime aircraft.


General Characteristics


The P-1 has the appearance and size of a 90 - 100 seat regional jet. It has a length of 38m, height of 12m and a wingspan of 35.4m making it significantly bigger than the P-3C and only marginally smaller than the P-8A which it is frequently compared with. The full complement comprises of 2 flight crew and 11 mission crew. Its maximum take-off weight is 79700kg or 176000lbs. Maximum speed is said to be 996km/h ( 538 knots ) while the cruising speed is 833 km/h ( 450 knots ). The P-1's maximum range is 8000km ( 4320 nm ) and the maximum operational ceiling is 13520m ( 44200 ft ).


Compare and contrast : the Boeing P-8A and the Kawasaki P-1 side by side at
Naval Air Facility Atsugi. USN Photo



Fuselage and Wings


The P-1 has an aerodynamic profile most suited for low speed and low altitude flight. It has a relatively long wing span with the leading edge swept back at 25 degrees but an almost straight trailing edge. A large wing area of  170m² generates more lift, decreases stall speed and increases agility.

Part of the fuselage is made of light weight composite material like carbon fiber.  KHI is responsible for fabricating the horizontal stabilisers, Fuji Heavy Industries the main wings and the vertical stabilisers, Mitsubishi Heavy Industries the mid and rear portions of the fuselage and Sumitomo Precision Products the landing gears.


Power Plant


Unlike its turboprop powered predecessor, the P-1 is powered by four IHI F7-10 high bypass turbofan engines. Japan's IHI Corporation developed the F-7-10 specifically for the P-1, using metal alloys that are corrosion resistant in salt environments. Sound absorbing panels are also used to lower the acoustic signature of the engines, achieving a sound level 5 to 10 dB below the P-3C's Allison T-56-A-14 turboprops. The F7-10 turbofan has a bypass ratio of 8.2:1 and each delivers a maximum thrust of 60kN or 13500lbs. The jet engines enables the P-1 to achieve a greater maximum speed, a higher operating ceiling, a longer range and carry a heavier load compared with the P-3C.


Having four engines instead of two is advantageous for MPAs as they frequently fly over open bodies of water at remote locations where airfields may not be readily available for emergency landings in case of engine failure. In addition, MPAs often have to execute their combat missions at low altitudes where bird strikes can be common. A single engine failure in a twin engine MPA like the P-8A would probably have necessitated a turn around whereas an MPA with four engines could still continue its mission with one engine shutdown. If fact, P-3C jockeys are known to deliberately shut down one or two of the Orion's four turboprop engines when on-station to reduce fuel consumption and increase on-station time. The P-1 with four turbofans could supposedly do the same but it would be suicidal to try that on a P-8A.




The IHI F7-10 Turbofan on the P-1 aircraft number 5506 taken at
 Iwakuni Air Base on 14th Sep 2014. Photo : Wikipedia


Postero-lateral view of the IHI F7-10 on the same aircraft as above. Photo : Wikipaedia 


Frontal view of the IHI F7-10 on the same aircraft as above. Photo : Wikipaedia

In addition, the P-1 has a Honeywell 131-9 Auxiliary Power Unit ( APU ) installed in the fuselage forward of the horizontal stabilizer to avoid interference with the MAD apparatus in the rear.


Avionics


Unlike the mostly analogue instruments of the P-3C, the P-1 has, in common with the Kawasaki C-2 transport, a modern digital " glass cockpit " with 6 large LCD multifunction displays and 2 sets of Head-Up Displays ( HUD ). The cockpit also features huge glass windows reflecting the Japanese emphasis on low altitude visual searches.


The cockpit windows are huge. Seen also are two HUDs and
the multi-function LCD displays. Image : Mainichi Shimbun




External view of the P-1's large windows. Image : Mainichi Shimbun




Flight Control


You have heard of fly-by-wire where flight control of an inherently aerodynamically unstable design is achieved by onboard computers continuously micro-adjusting the control surfaces. The P-1 is a generation ahead, being the first production aircraft to feature " fly-by-light " ( FBL ) where flight control commands are transmitted via optical fibre to the actuators. This decreases the risk of electromagnetic interference with the multitude of electronic sensors onboard. FBL also has the advantage of reducing the weight of the installed wiring and reduce power consumption. The technology had been extensively tested on the UP-3C before being implemented on the P-1.


Radar


The P-1 is equipped with the HPS-106 X-Band Active Electronically Scanned Array ( AESA ) radar system jointly developed by Toshiba and the Technical Research and Development Institute ( TRDI ) of the Japanese Defence Ministry. Consisting of 4 arrays, one mounted in the nose, two side-looking panels below the cockpit area and another in the tail, the HPS-106 has a constant 360 degree coverage. It can be used in multiple modes including surface search, air search, navigational and meteorological, synthetic aperture and inverse synthetic aperture. An inverse synthetic aperture radar ( ISAR ) utilizes the motion of the target to create a high resolution 2D image that can allow for threat identification.


The HPS-106 side-looking array is housed beneath this panel just below the cockpit. Wikipaedia Photo



Electro-Optical / Infrared


The P-1 features the Fujitsu HAQ-2 EO/IR suite mounted on a ball-like turret aft of the nose cone for tracking and examining surface targets. It consists of a Forward Looking Infrared ( FLIR ) device for thermal imaging, night vision and navigation, as well as cameras for capturing images in the visible light and near-infrared spectrum.


The Electro-Optical / FLIR Turret which can be retracted and
stowed within the fuselage when not in use. JMSDF Photo


Magnetic Anomaly Detector


The HSQ-102 magnetic anomaly detector housed in the sting-like MAD boom at the rear of the P-1 is a licence produced version of the Canadian CAE AN/ASQ-508(v) by Mitsubishi Electric. CAE is the world leader in the design, manufacture and integration of MAD systems. They have been designing MAD systems for more than 40 years and had delivered more than 2000 MAD systems to the military worldwide. The AN/ASQ-508(v) is also known as the Advanced Integrated MAD System ( AIMS ) and consists of a highly sensitive magnetometer with associated electronics mounted in the tail area of an aircraft to minimize magnetic interference. It detects the variations in the earth's magnetic field caused by the presence of metallic objects in the vicinity like a submerged submarine. The detection range is in the region of 1200m, meaning the MAD will work best with the aircraft flying at low altitudes and at low speeds, both of which the P-1 excels in. One of the key differences between the P-1 and the P-8 is that the P-8 does not have a MAD system.


Close-up view of the P-1's MAD boom which houses the HSQ-102 MAD system. Photo : Wikipaedia 


The " stinger " or MAD boom places the magnetometer as far away
from the aircraft as possible to minimize self interference.
Photo : Sunburn1979 via Creativecommons


Acoustic System and Sonobuoys


The P-1 can carry 30 pre-loaded sonobuoys and another 60 in racks in the cabin for reloading. The Acoustic Processor HQA-7 is manufactured by NEC. Other components of the acoustic system includes the  HRQ-1 Sonobuoy Receiver, HQH-106 Acoustic Data Recorder and the HAS-107 Sonobuoy Controller.



Sonobuoy launcher can be seen in the under-fuselage in this photo of the P-1 at RIAT 2015.
Wikipaedia Photo.


Sonobuoy Launcher Close-up. Image : Mainichi Shimbun

Sonobuoy rack with capacity for 96 sonobuoys. Image : Mainichi Shimbun

Rotary sonobuoy launcher. Image : Mainichi Shimbun


Acoustic workstation. Image : Mainichi Shimbun



Command and Control


The P-1 has a Combat Command System designated the HYQ-3 by Toshiba which is basically an onboard combat information processor, some sort of artificial intelligence that can assist the mission commander in planning for the best respond to an encountered threat, like delivering the optimal firing solution on an enemy submarine based on the combined information collected by all the plane's sensors and sensors from other friendly platforms nearby.

 

Communications


The P-1 is fitted with the HRC-124 UHF/VHF Radio and the HRC-123 satellite communications equipment made by Mitsubishi Electric.


Tactical Data Link


Equipped with Link 16 compatible MIDS-LVT terminal, the P-1 can share targeting and any other information with similarly equipped aircrafts like the F-15J, P-3C, E-767 AWACS, E-2C AEW, MH-60 naval helicopters, F-35 JSF, and surface vessels like the JMSDF's Aegis destroyers.


IFF


The HPX-105 Identification Friend or Foe system is installed with the two sets of four N-AT-347 IFF antennae mounted in front of the cockpit wind screen and at the under-fuselage area.


4 IFF antennae clearly seen above nose cone. Image : Mainichi Shimbun



Armaments


The P-1 has a total of 8 hard points under its wings which can be used to carry air to surface missiles like the AGM-84 Harpoon, the AGM-65 Maverick and the indigenously developed ASM-1C. These pylons, also known as the BRU-47/A Bomb Release Unit are rated to carry up to 2000lbs of ordnance each.

It also has an internal bomb bay with an additional 8 hard points which can be loaded with bombs, mines, depth charges and light weight torpedoes including the Mk46, the Japanese Type 97 ( G-RX4 ) and the latest Type 12 ( G-RX5 ). Up to 9000kg or 20000lbs of ordnance could be carried.


Weapon pylons ( BRU-47/A bomb release unit ) under the port wing
 and the internal bomb bay whose outline you can see just aft of the front landing gear
( with 3 red-tipped N-AS-331 and 1 yellow-tipped N-AS-330 antennae for the HRQ-1 sonobuoy receiver ).
 Wikipaedia photo.

XP-1 prototype fires AGM-65 Maverick missile in 2012. Photo : TRDI



The Type 97 ( G-RX4 ) 324mm light weight torpedo. Inert version displayed. Photo : Wikipaedia

 

Self-Protection System 


The P-1 is equipped with the Mitsubishi Electric HLQ-9 self-protection suite which includes the missile approach warning system ( MAWS ) and the radar warning receiver ( RWR ), accompanied by the usual dispensers for flare and chaff.


P-1 dispensing flares against heat seeking missiles 18th Oct 2015. Japanese MOD photo.

An Electronic Support Measures ( ESM ) suite, the Mitsubishi Electric HLR-109B is installed. You can see the ESM flaring which is the prominent bulge on top of the fuselage slightly behind the cockpit. The ESM suite detects and classifies enemy radar emissions and gives the P-1 a secondary role as an  Intelligence, Surveillance and Reconnaissance ( ISR ) platform.

Close-up of the ESM flaring just above and behind the cockpit windows. Photo : Wikipaedia


Air-to-Air Refueling


All indications seem to point towards the fact that unlike the Boeing P-8A or the Kawasaki C-2 with which it shares some common components, the P-1 does not have a probe or receptacle for accepting fuel transfers midair. It is highly unlikely that the meticulous Japanese designers would have overlooked this feature. Most probably it was intentionally omitted as a cost saving move. Further more, with a range of 8000km, perhaps the JMSDF chose to live without air-to-air refueling.


P-1 Variants


Just like its predecessor the P-3C Orion which had spawned many variants to serve different combat missions, the P-1 can potentially be similarly modified into different hardware configurations :

UP-1 : Utility / multi-purpose aircraft that can be used as a test bed for systems and equipment or in a supportive role as a training platform.

EP-1 : Signals Intelligence ( SIGINT ), Electronic Intelligence ( ELINT ) platform.

OP-1 : Observation / Visual Imaging platform.

AEW :  To replace the ageing E-2C Hawkeye airborne early warning aircraft. But the US had just approved the sale of four E-2D to Japan last year, so AEW conversion is currently less urgent or likely.

AIRBOSS : As an Advanced InfraRed Ballistic Missile Observation Sensor System platform. Obviously with Dear Leader as one's neighbour, the capability to detect ICBM / IRBM / SLBM launches in a timely manner can be a matter of utmost importance.

In Jun 2015, the first XP-1 prototype number 5501 had been converted to the UP-1 configuration with the aircraft number correspondingly reassigned 9501.



A UP-3C and a P-1 flying in formation. JMSDF Photo

 

Numbers Ordered


Based on Japanese Defence Ministry annual budget reports of the past few years, these are the current number of P-1 ordered and on order.

FY2008  4   units  ¥ 67.9billion
FY2010  1   unit    ¥ 21.1billion
FY2011  3   units  ¥ 54.4billion
FY2013  2   units  ¥ 40.9billion
FY2014  3   units  ¥ 59.4billion
FY2015  20 units  ¥ 350.4billion

Total P-1 ordered so far is 33 aircrafts, excluding the four XP-1 prototypes. The first 13 units from FY2008 to FY2014 are probably the low rate initial production ( LRIP ) tranches. Mass production really starts with FY2015's 20 unit order. All operational P-1s are deployed at Atsugi Air Base in Kanagawa Prefecture.



Exporting the P-1



Japanese weapon systems have traditionally been expensive due to the fact that they cannot be exported and so production runs are relatively small and cater to only the local defense agencies. Economy of scale can hardly be achieved with a such a small captive market. That has changed since last year when Prime Minister Abe tweaked the Constitution, paving the way for future weapon exports. And Kawasaki has been hard at work trying to sell the P-1 overseas.

Among the potential clients was the United Kingdom, a maritime nation whom in 2010 foolishly retired its Nimrod MR2 MPAs and then abruptly cancelled its replacement, the MRA.4 who's development was by then almost near completion, leaving them with absolutely no MPAs. In July 2015, the P-1 made its first overseas public appearance at the Royal International Air Tattoo ( RIAT ) at RAF Fairford, Gloucestershire, England, in an attempt to generate British interest in the aircraft. If successful, the deal could advance defence co-operation between the two countries and could be worth up to one billion dollars. Two aircrafts flew over to Fairford, number 5504 and 5507, one for static display and one for flight demonstration. You can watch and hear the flight demo here. After the airshow the P-1 went on to Djibouti to carry out hot weather tests before returning to Atsugi Air Base. The P-1's appearance at RIAT was well received and brought the exposure and generated the awareness it needed to compete successfully on the international stage. Hopefully we can begin to see the P-1 at more international airshows in the near future. Unfortunately for the Japanese, on 23rd Nov 2015 the UK announced their intention to buy nine P-8A Poseidon as part of the Strategic Defence and Security Review 2015, without going through any tender or competition.


Kaneohe Bay, Hawaii 7th Feb 2015. Private visit, private flight :
then COMPACFLT Adm Harry B. Harris Jr. walks with JMSDF Cmdr. Kazutaka Sugimoto
 following a flight on a Kawasaki P-1. USN Photo



However, apart from the UK, there are many other navies worldwide that operate the ageing P-3C Orion and they would soon need a replacement. So Kawasaki should in theory have no shortage of potential clients. The main competition would be the Boeing P-8A as they both have very similar capabilities, not surprising as they were intended to be replacements for the same aircraft. Already, Australia, a major P-3C ( AP-3C ) operator has selected the P-8A as its next generation MPA at a cost of A$4 billion for a total of 8 planes with support facilities. So has India, which will operate the P-8I. Still, at an estimated US$250 million per plane, the P-8A is significantly more expensive than the P-1 which costs half as much at $150 million ( based on Japanese MOD figures, FY 2015 acquisition of 20 P-1 at ¥350.4billion ). This would make the P-1 a value buy for current P-3C operators as well as any MPA operator looking to renew their fleet.



P-1 for Singapore?


Why not? The Republic of Singapore Air Force ( RSAF ) currently operates a fleet of 5 Fokker F-50 Enforcer II MPAs. These aircrafts have been in service since 1994 and are close to their end-of-life. Upgrading these MPAs would be challenging as the maker, Dutch aviation company Fokker had gone into receivership in 1996 and is now defunct. RSAF had apparently requested to inspect ex-USN P-3Cs in storage in Dec 2010 which meant it was considering the refurbished Orion as replacement for the F-50. Now, five years on, the P-1 has completed its development and has emerged a viable option since it is technically more advanced than the venerable P-3C and is a whole lot cheaper than the P-8A whose capability it mostly matches.



The Fokker F-50 Enforcer II MPA of RSAF's 121 Squadron. Photo credit on pic.

How much cheaper is it to restore a mothballed P-3C to active duty with modernized avionics and 15000 hours of life extension compared to buying a new build P-1 is anybody's guess, but I'll pick the a P-1 over the P-3 anytime.


P-1 and the State of the Japanese Defence Industry



For the past 70 years, the Japanese defence industry had lead a frustrating existence where restricted by the Constitution, their quality products were procured in anaemic quantities only for the domestic market. This dated, self-imposed restriction had finally been lifted paving the way for major arms export. Already, we are seeing Japanese defence companies participating in international trade shows for the first time.

The Kawasaki P-1 is a highly capable maritime patrol aircraft and a worthy successor to the P-3C. Its success in Japan had probably been guaranteed even before the maiden flight of the first prototype. Currently the planned procurement is for 70 aircrafts to replace 107 P-3C of all variants. Funding for the first 33 P-1 had already been disbursed / approved. The next logical milestone would be to secure export customers so that production volume can be ramped up further and unit cost can come down. Together with the AIP capable Soryu class submarine, and the ShinMaywa US-2 amphibious search and rescue plane, the P-1 maritime patrol aircraft would spearhead the Japanese effort to break into the international arms market. There would hopefully be some successes soon.